Title	Multiwavelength Ast	ronomy Science Unit -	– Gamma Ra	y Science			
Dates/Affiliated	250 minutes (set below as five 50 minute class periods) toward the end of a physics						
Unit	Electromagnetic Spec	ctrum Unit					
Student	Understanding of photons, the Electromagnetic Spectrum, some knowledge of optics.						
Prerequisites	relationship between	frequency, waveleng	th, understa	nding of ast	ronomical terms, e.g.,		
	neutron star, superno	neutron star, supernova, galactic nuclei					
AAAS Project	1A/H1 Science is base	ed on the assumption	that the uni	verse is a va	st single system in which		
2061	the basic rules are ev	erywhere the same a	nd that the t	hings and ev	vents in the universe occur		
	in consistent patterns	s that are comprehen	sible through	n careful, sys	stematic study.		
NSES	INTERACTIONS OF ENERGY AND MATTER: Electromagnetic waves result when a charged						
	object is accelerated or decelerated. Electromagnetic waves include radio waves (the longest						
	wavelength), microwaves, infrared radiation (radiant heat), visible light, ultraviolet radiation,						
	x-rays, and gamma rays. The energy of electromagnetic waves is carried in packets whose						
	magnitude is inversely proportional to the wavelength.						
Core Standards	RST.11-12.2. Determine the central ideas or conclusions of a text; summarize complex						
	concepts, processes, or information presented in a text by paraphrasing them in simpler but						
	still accurate terms.						
	WHST.11-12.2. Write informative/explanatory texts, including the narration of historical						
	events, scientific procedures/ experiments, or technical processes.						
Next Gen	HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic						
Standards	radiation can be described either by a wave model or a particle model, and that for some						
	situations one model	Is more useful than t	ne otner.	:	l materials of the offects		
	HS-PS4-4. Evaluate the validity and reliability of claims in published materials of the effects						
	that different frequencies of electromagnetic radiation have when absorbed by matter.						
	HS-PS3-3. Design, build, and refine a device that works within given constraints to convert						
Posourcos	One form of energy into another form of energy						
Needed			e Lab Days				
		Module Sched	lule				
Daily Objectives	Students will define	Students will	Students y	with recall	Student will		
	gamma-ray bursts.	synthesize a	the conce	pts of EM	demonstrate mastery of		
	recall the science of	search for their	spectru	um and	module content		
	GRB and GRB	passion and relate	photons t	o apply to			
	dection	it to Deiter	the search	n for GRBs			
		Hartmann's	Alternat	ive lab is			
		journey	Hewett's	"Shine a			
			Lig	ht"			
Daily Agenda	Reading Quiz and	Write "Your	Lab: Day I	Lab: Day	Demo over		
	discussion of the	journey"		П	transparency/opacity?		
	material from the	paragraph			Quiz over the science of		
	Web	Peer editing			Gamma Ray Astronomy		
Grading	Quiz graded for	Paragraph graded	Lab graded	for	Graded for correctness		
	correctness;	following rubric	completeness,				
	OR		properly recorded				
	Guide graded for		data, thoroughly				
	completeness		answered questions				

Reading Quiz (or reading guide)

- 1) What was Deiter Hartmann paid to do before he became an astronomer?
- 2) What is another name for an astronomer who looks at the very high-energy universe?
- 3) Complete the table below:

Band	Typical Wavelength	Approximate Size
Radio	1-100 m	Person, mountain
Microwaves		
	1 mm	
		Pinpoints
Visible Light		
		Molecules
	1 nm	
Gamma Ray		

- 4) Why might you want to observe the same object in several wavelengths of light?
- 5) With which satellites did we first discover gamma-ray bursts (GRBs)?
- 6) Where did we used to think GRBs came from?
- 7) Define *Cosmological*: Define Galactic:
- 8) A) A particle of Alpha radiation is and it can be stopped by a barrier made of
 - B) A particle of Beta radiation is
 - and it can be stopped by a barrier made of C) A particle of Gamma radiation is
 - and it can be stopped by a barrier made of
- 9) What are six sources of gamma rays?
- 10) Define Long GRB:

Define Short GRB:

- 11) Name five satellites that have done observations of GRBs
- 12) What are some non-astronomy uses for gamma-ray detectors?
- 13) Do we need to go above the atmosphere to observe in the gamma-ray wavelengths? Why or why not?

Please respond to <u>one</u> of the two prompts below in paragraph form

What would the world would be like if all of a sudden the world was without a specific form of energy? Examples include *electrical*, *gravitational*, *kinetic*, *spring*, *elastic*, *rotational*, *or chemical energy*

Or

Deiter Hartmann took a long and varied journey to his final goal of becoming an astrophysicist. Along the way he overcame obstacles and took temporary diversions.

Give an example of a long-term goal that you have had and give specific examples of obstacles that you overcame and diversions that you took on your way to your final goal

EC will be given for attending the Writing Center and getting writing help as shown by attaching your corrected rough draft to the final draft.

Please remember to include:

-Evidence (example, data, quote AN APPROVED ARTICLE or THE BOOK)

-Link (or an explanation) of that evidence

-You will be graded on the following rubric so I **HIGHLY** recommend looking it over:

4	3	2	1
PARAGRAPH FORM:	Paragraph is missing one	Paragraph is missing 2	Paragraph is missing 3 or
Paragraph contains main	component.	components.	more components.
idea, evidence (3), link (3)			
and conclusion.			
Paragraph's explanations	Paragraph has development	Paragraph is a bit	Paragraph shows little to no
(LINKS) are well thought out	of links though some	confused/LINKs do not	development of LINKs.
and connect with the main	reasoning is sloppy.	support main idea.	
idea.			
Paragraphs contain no	Paragraph contains 1-2	Paragraph contains 3-4	Paragraph contains 5 plus
grammar, punctuation,	errors.	errors	errors.
spelling, or capitalization			
errors.			
Paragraphs use deep	Paragraph uses somewhat	Paragraph uses shallow	Paragraph is not convincing.
understanding to prove main	deep understanding.	understanding.	
idea and is convincing.			

f

Name_

Teacher__

Period

Name	_ Period	Date
------	----------	------

The Science of Astronomical Detection

Objectives:

Determine how astronomers quantify and detect the incoming light from astronomical objects

Theory:

In 1921 Albert Einstein received the Nobel Prize in Physics for "services to the field of modern physics and especially for his discovery of the photoelectric effect." Something that he discovered, or at least formalized, allowed todays scientists to measure the light coming from stars. Astronomers from ancient times until the early 1970s had to rely on their eyes, then cameras or something similar, but in 1969, AT&T Bell Labs created and refined a device that would use this principle to make astronomy digital.

Part I: The Photoelectric Effect

Procedure:

1. Use the computer to log into the PhET Simulations page from the University of Colorado, and navigate to Physics > Light & Radiation > Photoelectric Effect

2. Briefly describe the setup in the space below

3. Identify the metal target that is having the light shone on it.

4. While keeping the voltage in the battery at zero, vary first the intensity while keeping the frequency stable, then vary the frequency while keeping the intensity constant. Hint: Turn on *current vs. intensity* and *energy vs. frequency* graphs.

5. Record your general observations below for sodium.

6. Repeat steps 3 - 5 for the other elements on the drop-down list.

Data:

Starting element _____

Describe the relationship between frequency and current

Describe the relationship between intensity and current

Sketch the relationship of **intensity** vs. current

Sketch the relationship of **frequency** vs. current

 \rightarrow

Be sure that your axes are labeled and that the sketches have important points labeled (max, min, asymptotes)

Next element _____

Describe the relationship between frequency and current

Describe the relationship between intensity and current

Sketch the relationship of **intensity** vs. current

Sketch the relationship of **frequency** vs. current

 \rightarrow

(Repeat this on the back for the other 3 elements)

 \rightarrow

Analysis:

1. Which metal gave up its electrons most easily? Which were the hardest to separate?

2. What is the relationship between electron energy and frequency? What about electron energy and intensity?

3. What do you think is actually happening inside of the metal that causes a current to be created?

4. What happened to the current if you applied a positive voltage? What about if you were to apply a negative voltage?

5. Is there anything special about metals that would make them better photovoltaic targets than other materials?

6. What would happen if we repeated this experiment with (a) non-metals? (b) different foams? (c) different woods?

7. If we were to use what you learned in question 1 and the lab, what would be the characteristics of a material that would be the best detector for a star that gives off primarily Green light? UV light? Red light? Why?